Search results for "MASS SCALE"

showing 10 items of 14 documents

Search for relativistic magnetic monopoles with the ANTARES neutrino telescope

2012

Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magnetic monopoles with the ANTARES neutrino telescope using a data set of 116 days of live time taken from December 2007 to December 2008. The one observed event is consistent with the expected atmospheric neutrino and muon background, leading to a 90% C.L. upper limit on the monopole flux between 1.3 ¿ 10¿17 and 8.9 ¿ 10¿17 cm¿2 s¿1 sr¿1 for monopoles with velocity ß ¿ 0.625.

FLUXMuon backgroundParticle physicsGauge modelMagnetic monopolesAstrophysics::High Energy Astrophysical PhenomenaMagnetic monopoleneutrino telescopes; antares; magnetic monopoleFOS: Physical sciencesCosmic ray01 natural sciencesNuclear physics0103 physical sciencesNeutronFIELD010306 general physicsDETECTORCherenkov radiationZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)NeutronsPhysicsSPECTRUMAtmospheric neutrinosMagnetic monopoleANTARES:Física::Acústica [Àrees temàtiques de la UPC]MuonCharged particles010308 nuclear & particles physicsAstronomy and AstrophysicsMonopols magnèticsUpper limitsNeutrino detectorMass scaleFISICA APLICADA[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Física nuclearData setsNeutrino telescopes[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical PhenomenaEvent (particle physics)TelescopesAstroparticle Physics
researchProduct

Massive neutrinos and cosmology

2006

The present experimental results on neutrino flavour oscillations provide evidence for non-zero neutrino masses, but give no hint on their absolute mass scale, which is the target of beta decay and neutrinoless double-beta decay experiments. Crucial complementary information on neutrino masses can be obtained from the analysis of data on cosmological observables, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure. In this review we describe in detail how free-streaming massive neutrinos affect the evolution of cosmological perturbations. We summarize the current bounds on the sum of neutrino masses that can be derived from various combin…

High Energy Physics - TheoryPhysicsCosmic microwave backgroundHigh Energy Physics::PhenomenologyAstrophysics (astro-ph)General Physics and AstronomyFísicaFOS: Physical sciencesObservableAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsCMB cold spotBeta decayCosmologyHigh Energy Physics - ExperimentHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Data analysisMass scaleHigh Energy Physics::ExperimentNeutrino
researchProduct

Broad excitations in a 2+1D overoccupied gluon plasma

2021

Motivated by the initial stages of high-energy heavy-ion collisions, we study excitations of far-from-equilibrium 2+1 dimensional gauge theories using classical-statistical lattice simulations. We evolve field perturbations over a strongly overoccupied background undergoing self-similar evolution. While in 3+1D the excitations are described by hard-thermal loop theory, their structure in 2+1D is nontrivial and nonperturbative. These nonperturbative interactions lead to broad excitation peaks in spectral and statistical correlation functions. Their width is comparable to the frequency of soft excitations, demonstrating the absence of soft quasiparticles in these theories. Our results also su…

Nuclear and High Energy PhysicsCOLLISIONSNuclear TheoryField (physics)FOS: Physical sciencesLattice QCDQC770-798hiukkasfysiikka01 natural sciences114 Physical sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesPerturbative QCDfysikkField theory (psychology)Gauge theory010306 general physicsKINETIC-THEORYUNIVERSAL DYNAMICSPhysics:Matematikk og Naturvitenskap: 400::Fysikk: 430 [VDP]MASS SCALENUCLEI010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)kvarkki-gluoniplasmaPerturbative QCDLattice QCDFIELD-THEORY3. Good healthGluonHigh Energy Physics - PhenomenologyQuantum electrodynamicsQuark–gluon plasmaQuasiparticleQuark-Gluon PlasmaGAUGE-THEORIESJournal of High Energy Physics
researchProduct

What can we learn from neutrinoless double beta decay experiments?

2004

We assess how well next generation neutrinoless double beta decay and normal neutrino beta decay experiments can answer four fundamental questions. 1) If neutrinoless double beta decay searches do not detect a signal, and if the spectrum is known to be inverted hierarchy, can we conclude that neutrinos are Dirac particles? 2) If neutrinoless double beta decay searches are negative and a next generation ordinary beta decay experiment detects the neutrino mass scale, can we conclude that neutrinos are Dirac particles? 3) If neutrinoless double beta decay is observed with a large neutrino mass element, what is the total mass in neutrinos? 4) If neutrinoless double beta decay is observed but ne…

Nuclear and High Energy PhysicsParticle physicsNuclear TheoryFOS: Physical sciencesAstrophysics01 natural sciencesNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)Double beta decay0103 physical sciencesMass scaleNuclear Experiment (nucl-ex)010306 general physicsNeutrino oscillationNuclear ExperimentPhysicsMass element010308 nuclear & particles physicsDirac (video compression format)Astrophysics (astro-ph)High Energy Physics::PhenomenologyBeta decayHigh Energy Physics - PhenomenologyAstronomiaHigh Energy Physics::ExperimentNeutrinoMass hierarchy
researchProduct

First operation of the KATRIN experiment with tritium

2020

AbstractThe determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of $$\upbeta $$β-decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of $$0.2\hbox { eV}$$0.2eV ($$90\%$$90% CL). In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was …

Physics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsFOS: Physical scienceslcsh:Astrophysics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]TritiumKATRIN01 natural sciencesantineutrino/e: massHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)lcsh:QB460-4660103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]lcsh:Nuclear and particle physics. Atomic energy. RadioactivityMass scaleddc:530Electron Capture[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsEngineering (miscellaneous)Nuclear ExperimentAstroparticle physicsPhysics010308 nuclear & particles physicstritiumPhysicsQuímicaInstrumentation and Detectors (physics.ins-det)sensitivityddc:lcsh:QC770-798TritiumHigh Energy Physics::ExperimentNeutrinoPräzisionsexperimente - Abteilung BlaumNeutrino Mass[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Electron neutrinoperformanceKATRINAstrophysics - Cosmology and Nongalactic Astrophysicsexperimental results
researchProduct

Running gravitational couplings, decoupling, and curved spacetime renormalization

2020

We propose to slightly generalize the DeWitt-Schwinger adiabatic renormalization subtractions in curved space to include an arbitrary renormalization mass scale $\mu$. The new predicted running for the gravitational couplings are fully consistent with decoupling of heavy massive fields. This is a somewhat improvement with respect to the more standard treatment of minimal (DeWitt-Schwinger) subtractions via dimensional regularization. We also show how the vacuum metamorphosis model emerges from the running couplings.

PhysicsHigh Energy Physics - TheorySpacetime010308 nuclear & particles physicsHigh Energy Physics::LatticeFOS: Physical sciencesDecoupling (cosmology)General Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyRenormalizationGravitationDimensional regularizationGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)0103 physical sciencesMass scale010306 general physicsAdiabatic processCurved spaceMathematical physics
researchProduct

CPT Violation and the Nature of Neutrinos

2002

In order to accommodate the neutrino oscillation signals from the solar, atmospheric, and LSND data, a sterile fourth neutrino is generally invoked, though the fits to the data are becoming more and more constrained. However, it has recently been shown that the data can be explained with only three neutrinos, if one invokes CPT violation to allow different masses and mixing angles for neutrinos and antineutrinos. We explore the nature of neutrinos in such CPT-violating scenarios. Majorana neutrino masses are allowed, but in general, there are no longer Majorana neutrinos in the conventional sense. However, CPT-violating models still have interesting consequences for neutrinoless double beta…

PhysicsNuclear and High Energy PhysicsParticle physicsNuclear TheoryPhysics::Instrumentation and DetectorsHigh Energy Physics::PhenomenologyFísicaFOS: Physical sciencesNuclear Theory (nucl-th)MAJORANAHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Double beta decayMass scaleHigh Energy Physics::ExperimentNeutrinoNeutrino oscillationMixing (physics)
researchProduct

KATRIN, a next generation tritium β decay experiment in search for the absolute neutrino mass scale

2002

Abstract With the compelling evidence for massive neutrinos from recent ν-oscillation experiments, one of the most fundamental tasks of particle physics over the next years will be the determination of the absolute mass scale of neutrinos, which has crucial implications for cosmology, astrophysics and particle physics. A next generation tritium β decay experiment, the Karlsruhe Tritium Neutrino experiment (KATRIN), is proposed to reach a sub eV sensitivity on the absolute mass of the electron neutrino.

PhysicsNuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsSolar neutrinoSolar neutrino problemCosmologyNuclear physicsHigh Energy Physics::ExperimentTritiumMass scaleNeutrinoElectron neutrinoKATRINProgress in Particle and Nuclear Physics
researchProduct

Calculation of the two-loop heavy-flavor contribution to Bhabha scattering

2008

We describe in detail the calculation of the two-loop corrections to the QED Bhabha scattering cross section due to the vacuum polarization by heavy fermions. Our approach eliminates one mass scale from the most challenging part of the calculation and allows us to obtain the corrections in a closed analytical form. The result is valid for arbitrary values of the heavy fermion mass and the Mandelstam invariants, as long as s,t,u >> m_e^2.

PhysicsNuclear and High Energy PhysicsParticle physicsStandard Model530 PhysicsElectromagnetic Processes and PropertiesHigh Energy Physics::PhenomenologyFOS: Physical sciencesFermionLEP HERA and SLC PhysicsLoop (topology)High Energy Physics - PhenomenologyCross section (physics)High Energy Physics - Phenomenology (hep-ph)10231 Institute for Computational ScienceHeavy fermionMass scaleVacuum polarization3106 Nuclear and High Energy PhysicsFlavorBhabha scatteringJournal of High Energy Physics
researchProduct

PROJECT 8: A FREQUENCY-BASED APPROACH TO MEASURE THE ABSOLUTE NEUTRINO MASS SCALE

2021

PhysicsParticle physicsAbsolute (philosophy)Measure (physics)Mass scaleNeutrinoParticle Physics at the Year of 150th Anniversary of the Mendeleev's Periodic Table of Chemical Elements
researchProduct